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Abstract. We examine the (3+1)-class of 4-neutrino mass spectra within a rigorous statistical analysis
based on the Bayesian approach to probability. The data of the Bugey, CDHS and KARMEN experiments
are combined by using a likelihood function. Our statistical approach allows us to incorporate solar and
atmospheric neutrino data and also the result of the CHOOZ experiment via inequalities which involve
elements of the neutrino mixing matrix and are derived from these data. For any short-baseline ∆m2 we
calculate a bound on the LSND transition amplitude Aµ;e and find that, in the ∆m2–Aµ;e plane, there
is no overlap between the 99% CL region allowed by the latest LSND analysis and the region allowed by
our bound on Aµ;e at 95% CL; there are some small overlap regions if we take the bound at 99% CL.
Therefore, we conclude that, with the existing data, the (3+1)-neutrino mass spectra are not very likely.
However, treating the (2+2)-spectra with our method, we find that they are well compatible with all data.

1 Introduction

At present, there are three indications in favour of neu-
trino oscillations [1], namely the solar νe deficit [2], the

atmospheric
(−)
νµ [3,4] deficit and the result of the LSND

experiment [5,6] hinting at
(−)
νµ→(−)

νe transitions. Whereas
in the case of the first two indications several experiments
agree on the existence of the effect, the third indication
is found only by the LSND collaboration. Therefore, in
many analyses the LSND result is left out. However, if
all three indications in favour of neutrino oscillations are
confirmed, for three mass-squared differences of different
orders of magnitude (10−10 eV2 < ∆m2

solar < 10−7 eV2 or
∆m2

solar ∼ 10−5 eV2, ∆m2
atm ∼ 3 × 10−3 eV2, ∆m2

LSND ∼
1 eV2) one needs a minimum of four neutrinos, three active
ones and a sterile one [7]. In that case a major revision of
our picture of the lepton sector of the elementary particles
would be necessary, with a mixing between the active and
the sterile neutrinos; i.e.,

ναL =
4∑
j=1

UαjνjL with α = e, µ, τ, s, (1)

if we stick to the minimum of four neutrinos. In (1) the
left-handed flavour fields are denoted by ναL and the left-
handed mass eigenfields by νjL, and the 4 × 4 neutrino
mixing matrix U is assumed to be unitary.
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One of the most important issues in the context of 4-
neutrino scenarios is the question of the 4-neutrino mass
spectrum [8–10]. There are two different spectral classes
with very different properties: the first class contains four
types and consists of spectra where three neutrino masses
are clustered together, whereas the fourth mass is sep-
arated from the cluster by the mass gap needed to re-
produce the LSND result1; the second class has two types
where two pairs of nearly degenerate masses are separated
by the LSND gap. These two classes have been dubbed
(3+1) and (2+2)-neutrino mass spectra, respectively [11].
The main difference between these two classes is that, if
a (2+2)-spectrum is realised in nature, the transition into
the sterile neutrino is a solution of either the solar or the
atmospheric neutrino problem, or the sterile neutrino has
to take part in both, whereas with a (3+1)-spectrum it
could be only slightly mixed with the active neutrinos and
mainly provide a description of the LSND result.

It has been argued in the literature [8–10,12] that
the (3+1)-spectra are strongly disfavoured by the data,
whereas the (2+2)-spectra are the preferred ones, in agree-
ment with all data showing evidence for neutrino oscilla-
tions and also with those where no such evidence has been
found. Recently, in [11,13,14] this statement has been
challenged because in the latest LSND analysis the allowed
region in the ∆m2–Aµ;e plane, where Aµ;e is the LSND
transition amplitude, has undergone a slight shift towards
smaller mass-squared differences, which makes the (3+1)-
spectra somewhat less disfavoured. Furthermore, in a 2-

1 This class contains the hierarchical mass spectrum
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neutrino analysis of atmospheric neutrino oscillations the
Super-Kamiokande data prefer νµ → ντ conversion over
νµ → νs [15]. Moreover, there is some debate also on the
solar neutrino problem: the issue is whether the νe → νs
transition is disfavoured in comparison with other solu-
tions [16], though such a feature seems not to be borne
out by a global analysis of the data [17]. In any case,
moving away from pure 2-neutrino considerations in the
solar and atmospheric neutrino problems, transitions into
active–sterile superpositions [18,19] give viable solutions
to both problems within the (2+2)-spectral schemes, with
features which will be tested in the future [14].

The arguments presented in [8–10], which disfavour the
(3+1)-mass spectra, are based on exclusion curves from
short-baseline (SBL) experiments, and solar and atmo-
spheric neutrino data enter into this simplified analysis
only through inequalities. The advantage of this approach
is that its parameters are confined to the quantities2

dα = |Uα4|2 (α = e, µ) (2)

and the SBL or LSND mass-squared difference ∆m2. For
definiteness we assume that the mass separated by the
LSND gap is m4 and, therefore, ∆m2 = |m2

4 − m2
1|. It

has turned out that the up–down asymmetry of atmo-
spheric multi-GeV µ-like events measured in the Super-
Kamiokande experiment [3] is very suitable to constrain
dµ [10], whereas from the solar data it follows that de must
be small. The probability of SBL νµ → νe transitions is
given by the two-neutrino-like formula [8]

Pνµ→νe = Pν̄µ→ν̄e = Aµ;e sin2
∆m2L
4E

, (3)

where L is the distance between source and detector and
E is the neutrino energy and

Aµ;e = 4dedµ. (4)

The LSND experiment gives an allowed region in the
∆m2–Aµ;e plane.

However, the arguments of [8–10] are not based on a
well-defined statistical procedure. Therefore, they remain
on a semi-quantitative level and do not allow one to as-
sess a confidence level (CL) which quantifies the degree at
which the (3+1)-spectra are excluded.

In this paper we make a step forward towards such an
assessment. The main points to achieve our goal are the
following:
(1) The aim is to arrive, for every SBL mass-squared dif-
ference ∆m2, at a probability distribution solely in terms
of de and dµ; a suitable method for this purpose is given by
the likelihood function in combination with the Bayesian
approach (see, e.g., [20,21]).
(2) We make full use of the data of the SBL Bugey [23],
CDHS [25] and KARMEN [26,27] experiments through
the likelihood function.
(3) In the spirit of [8,10], all information pertaining to the
atmospheric and solar mass-squared differences is included

2 Note that in [10] the quantities cα = 1−dα are used instead

via inequalities. Within our probabilistic framework we
are able to treat inequalities as prior probabilities or with
a kind of a maximum likelihood method.
(4) In this way we treat the inequality following from the
atmospheric up–down asymmetry and, similarly, we in-
clude also the result of the CHOOZ experiment [22]; the
solar neutrino data allow a simpler treatment in the con-
text of the Bugey data [23], as described in [8,24].
(5) Eventually, for every given SBL ∆m2 and any CL β,
we are able to calculate an upper bound A0

β(∆m2) on
the transition amplitude Aµ;e, and we can compare such
bounds A0

β(∆m2) with the 90% and 99% CL regions in
the ∆m2–Aµ;e plane found by the LSND experiment [6].

In the same framework we will also discuss the (2+2)-
spectra.

The plan of the paper is as follows. In Sect. 2 we red-
erive the atmospheric up–down inequality [10] in a form
which is suitable for our purpose. In Sect. 3 we introduce
the likelihood function and the Bayesian approach, and de-
scribe how to incorporate inequalities; we apply the meth-
ods developed there to the CHOOZ result and the atmo-
spheric up–down inequality. In Sect. 4 we explain how we
calculate bounds on Aµ;e and discuss each of the SBL ex-
periments we use, together with their features which are
important in this context. Details of a technical nature are
deferred to the appendix. Our main result, represented as
a plot in the ∆m2–Aµ;e plane, is also given in this section.
In Sect. 5 we consider the (2+2)-spectra in the framework
of our statistical approach and in Sect. 6 we draw our con-
clusions.

2 The atmospheric up–down asymmetry
as a constraint on short-baseline
neutrino oscillations

The most convincing evidence for
(−)
νµ disappearance in

atmospheric neutrino experiments is given by the so-called
up–down asymmetry

Aud =
U − D

U +D
(5)

measured by the Super-Kamiokande Collaboration [3],
where U and D refer to the number of up-going and down-
going µ-like multi-GeV events, respectively. Quoting the
number for fully contained events, after 1289 days of op-
eration the result

Aexp
ud = −0.327± 0.045± 0.004 (6)

was found [28]. Adding statistical and systematic error in
quadrature, one obtains

∆Aexp
ud ≡ σA = 0.045. (7)

Because of the smallness of the systematic error this value
is identical with the statistical error.

Let us now rederive the atmospheric up–down inequal-
ity [10]. In the following we will not indicate antineutri-
nos but our arguments will hold for both, neutrinos and
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antineutrinos. With the assumption that downward-going
atmospheric neutrinos do not oscillate with the frequency
associated with ∆m2

atm and that oscillations according to
∆m2 are averaged out, we obtain

PDνµ→νµ
= d2µ + (1− dµ)2 and PDνe→νµ

=
1
2
Aµ;e. (8)

Denoting the number of muon (electron) neutrinos and
antineutrinos produced in the atmosphere by nµ (ne), it
follows from (8) that

D = nµ[d2µ + (1− dµ)2] +
1
2
neAµ;e. (9)

For the upward-going neutrinos we have the inequalities
[10]

PUνµ→νµ
≥ d2µ and PUνe→νµ

≥ 1
4
Aµ;e. (10)

We, therefore, have the inequality

U ≥ nµd
2
µ +

1
4
neAµ;e. (11)

Note that for the (3+1)-spectra the amplitude Aµ;e is
given by (4). Since −Aud (5) is a monotonously decreasing
function in U , using (9) and (11) we obtain the so-called
up–down inequality for µ-like atmospheric events

−Aud ≤ G(de, dµ) =
(1− dµ)2 + dedµ/r

(1− dµ)2 + 2d2µ + 3dedµ/r
. (12)

In this equation we have defined r = nµ/ne. The numerical
value r 
 2.8 can be read off from Fig. 3 in [3] of the Super-
Kamiokande Collaboration. With similar arguments one
can also find an upper bound

Aud ≤ H(de, dµ) =
dµ(1− dµ)− dedµ/r

1− dµ(1− dµ) + dedµ/r
. (13)

Hence, the up–down asymmetry is confined to the interval

−G ≤ Aud ≤ H. (14)

Some remarks are at order. Our inequality (12) is a lit-
tle different from the analogous inequality in [10], because
in the present case we have not eliminated de; this is useful
because our aim is to derive a probability distribution in de
and dµ (see next section). The ratio r has a slight depen-
dence on the atmospheric zenith angle which is neglected
here; however, since de is confined to rather small values [8,
24] by the result of the Bugey experiment [23], the terms
containing r are rather unimportant numerically. The as-
sumptions for deriving (12) and (13) are not exactly ful-
filled: for down-going neutrinos with zenith angles around
0◦, oscillations according to small SBL mass-squared dif-
ferences ∆m2 around 0.2 eV2 are not completely averaged
out; for down-going neutrinos with zenith angles close to
90◦, oscillations according to ∆m2

atm do occur already, if
the atmospheric mass-squared difference is large. We have
checked that both effects do not change numerically the
bound G by more than a few percent in the worst case.

Finally, matter effects, which are important for up-going
neutrinos, do not affect the inequalities (10) and thus also
not the inequality for U . Formula (12) is, therefore, a well-
established inequality which restricts mainly the allowed
range of dµ. Due to (4), it will be used in the following to
constrain the SBL amplitude Aµ;e.

3 The statistical treatment of inequalities

As mentioned in the introduction, a suitable method for
the purpose of deriving a probability distribution in the
variables de and dµ is given by the likelihood function
combined with the Bayesian approach, which is defined
as follows. Suppose one has a series of measurements x =
(x1, . . . , xn) and r parameters θ = (θ1, . . . , θr) to be esti-
mated. Then the Bayesian approach allows to construct a
“posterior” probability density in the parameter space via
(see, e.g., [20,21])

p(θ|x) = L(x|θ)π(θ)∫
drθ′L(x|θ′)π(θ′)

. (15)

In this expression, L(x|θ) is the likelihood function and
π(θ) is the prior probability density associated with the
parameters θ, reflecting the state of knowledge of θ before
the measurement.

3.1 Inequalities included as priors

Let us suppose now that we consider an observable Z
whose experimental value is zexp ± σz and its true value
is z. We assume that the values of measurements of Z are
distributed according to a Gaussian distribution

LZ =
1√
2πσz

exp

[
−1
2

(
zexp − z

σz

)2
]

(16)

around the true value. Suppose further that from some
theoretical consideration we have the knowledge that the
true value z is bounded by

a ≤ z ≤ b. (17)

We conceive of the true value z, which is otherwise un-
known, as a parameter in our scenario and assign to it a
prior probability density

πZ(z) =
1

b − a
Θ(b − z)Θ(z − a), (18)

where Θ denotes the Heaviside function. Due to lack of
further knowledge, we have assumed a flat prior proba-
bility density. Since we are not interested in a posterior
probability density in the parameter z we perform the in-
tegral ∫

dzLZ(z)πZ(z) = #Z (19)
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with

#Z =
1

2(b − a)

{
erf

(
b − zexp√

2σz

)
+ erf

(
zexp − a√

2σz

)}
,

(20)
where we have made use of the error function defined by

erf(z) =
2√
π

∫ z

0
dte−t2 . (21)

The function (20) represents then the relevant factor in
the posterior probability density which takes into account
the inequality (17).

To check if we have been lead to a meaningful expres-
sion (20), we want to discuss the behaviour of this func-
tion. Following from erf(∞) = −erf(−∞) = 1, we find
that for a  zexp  b we have #Z 
 1/(b − a) to a very
good approximation, and for zexp � b or zexp  a we
have #A 
 0. In this discussion, “much smaller” or “much
larger” is defined in units of σz. If we assume that σz
becomes negligibly small, the function #Z approaches a
step function with 1/(b − a) being the height of the step.
The edges of the step are smoothened out by a finite σz.
Thus, we will have a maximal contribution to the pos-
terior probability density for zexp well inside the interval
[a, b], whereas for zexp well outside the interval [a, b] the
function #Z is very close to zero. Thus we can be confi-
dent that the inequality (17) is reasonably well taken into
account by our procedure.

3.2 Inequalities treated
with a maximum likelihood method

Again we start from (16) and (17). Now we take into ac-
count our lack of knowledge about the true value of Z by
maximising LZ as a function of z ∈ [a, b]. It is easy to
check that one obtains

max
z∈[a,b]

LZ ≡ LmZ

=
1√
2πσz

exp

{
−1
2

[(
zexp − b

σz

)2

Θ(zexp − b)

+
(
a − zexp

σz

)2

Θ(a − zexp)

]}
. (22)

In AppendixA we will discuss how this method is related
to the method in the previous section.

3.3 The treatment of the CHOOZ result
and the atmospheric up–down inequality
in our statistical approach

The CHOOZ experiment is a long-baseline ν̄e disappear-
ance experiment. It measures the survival probability
PCH, for which we derive the inequality

PCH = 1− 2de(1− de)
− 2|Ue3|2(1− de − |Ue3|2)(1− cosφatm)
≤ 1− 2de(1− de). (23)

We have used the abbreviation φatm = ∆m2
atmL/2E. We

consider PCH in (23) as the true survival probability, as
opposed to the experimental value P exp

CH = 1.01 with the
error σCH = 0.039 [22]. Thus we have the range

0 ≤ PCH ≤ 1− 2de(1− de). (24)

Making the substitutions

a → 0, b → 1− 2de(1− de), z → PCH,

zexp → P exp
CH , σz → σCH, (25)

the CHOOZ result can be included in the statistical anal-
ysis according to both methods described in the previous
subsections.

For the atmospheric up–down inequality we substitute

a → −G, b → H, z → Aud,

zexp → Aexp
ud , σz → σA, (26)

where G, H, Aexp
ud and σA are given by (12), (13), (6) and

(7), respectively. Notice that, since we have Aexp
ud  0 and

H ≥ 0, the first term in the exponential of the expression
(22) does not contribute here, and the first term in the
expression (20) is 1 for all practical purposes.

The substitutions (25) and (26) allow us to define – ac-
cording to (16), (18), (20), (22) – the functions LCH, πCH,
#CH, LmCH and Lud, πud, #ud, Lmud, referring to the CHOOZ
experiment and the atmospheric up–down inequality, re-
spectively. These functions will be used in the following
discussions.

4 A bound on the
LSND

(−)
νµ→(−)

νe transition amplitude

4.1 The statistical procedure

Let us now describe how to derive our desired probability
distribution. We concentrate on the four parameters de,
dµ, Aud and PCH. We want to stress again that the lat-
ter two quantities are conceived of as true values. There-
fore, they are parameters within our procedure and we will
treat them according to the methods described in Sect. 3,
in order to arrive at a distribution solely in de and dµ. The
likelihood function is given by

L = Losc(de, dµ)× Lud(Aud)× LCH(PCH), (27)

where the first factor Losc is the product of the likeli-
hood functions of the Bugey, CDHS and KARMEN exper-
iments. This likelihood function will be discussed in the
next section and in AppendixB. For the treatment of pa-
rameters other than de and dµ, which appear in the fitting
procedure to the SBL experiments, see also AppendixB.

The physically allowed region Rd of de and dµ is de-
scribed by the inequalities

Rd : de ≥ 0, dµ ≥ 0 and de + dµ ≤ 1. (28)
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In order to incorporate it into our procedure, we define a
function R(de, dµ) such that R(de, dµ) = 1 for (de, dµ) ∈
Rd and 0 otherwise. This function has thus the task of
a prior which confines (de, dµ) to the physically meaning-
ful region. Adopting the maximum likelihood method of
Sect. 3.2 in order to deal with the parameters Aud and PCH
and combining this method with (15), we finally arrive at
the desired probability distribution

pm(de, dµ) = (29)
Losc(de, dµ)Lmud(de, dµ)L

m
CH(de)R(de, dµ)∫

dd′
e

∫
dd′
µLosc(d′

e, d
′
µ)Lmud(d′

e, d
′
µ)LmCH(d′

e)R(d′
e, d

′
µ)
.

The dependence of Lmud(de, dµ) and LmCH(de) on de and dµ
comes in through the substitutions (26) and (25) of the
boundaries a and b.

Discussing now the Bayesian approach described in
Sect. 3.1, we have the prior probability density

π(de, dµ, Aud, PCH) (30)

=
1
2
R(de, dµ)πud(de, dµ, Aud)πCH(de, PCH).

We stress that∫
dAud

∫
dPCHπ(de, dµ, Aud, PCH) =

1
2
R(de, dµ) (31)

is fulfilled. This equation tells us that, after integrating
over the other variables, the prior probability density for
de and dµ is uniform. Since these are the variables whose
distribution we want to calculate, (31) assures us that with
our choice of priors we have not introduced a bias in the
distribution of de and dµ.

According to the Bayesian approach in Sect. 3.1 we
perform the integrations∫

dAud

∫
dPCHLudLCHπ. (32)

Finally, we obtain via this method the probability distri-
bution

pb(de, dµ) = (33)
Losc(de, dµ)#ud(de, dµ)#CH(de)R(de, dµ)∫

dd′
e

∫
dd′
µLosc(d′

e, d
′
µ)#ud(d′

e, d
′
µ)#CH(d′

e)R(d′
e, d

′
µ)
.

It is important to note that for every ∆m2 we have
such a distribution. The SBL mass-squared difference,
which is hidden in Losc, is not on the same footing as
de and dµ in our approach. For every given ∆m2, we find
restrictions on de and dµ from experiment3 which allow
us finally to obtain a bound on the transition amplitude
Aµ;e for any given CL. Choosing a CL β, we find the cor-
responding bound on Aµ;e by the prescription∫

4dedµ≤A0
β

ddeddµpj(de, dµ) = β (j = m, b). (34)

3 Note that in the analyses of the Bugey [23] and CDHS [25]
experiments ∆m2 is treated in the same way

For instance, if we choose β = 0.99, with (34) we can
calculate a number A0

0.99 such that Aµ;e ≤ A0
0.99 at 99%

CL.
The two distributions pm(de, dµ) (29) and pb(de, dµ)

(33) are, of course, different functions of the variables.
The method to obtain bounds on Aµ;e as given by (34) is
the same for both distributions. In the following, we will
comment on how much the bounds on Aµ;e calculated with
both distributions differ numerically.

4.2 A qualitative discussion of the SBL data

As mentioned previously, the SBL experiments are treated
with the likelihood function

Losc(de, dµ) = LBugey(de)×LCDHS(dµ)×LKARMEN(Aµ;e),
(35)

which enters (27). Here we want to discuss some features of
Losc and how these features influence the bound on Aµ;e.
Let us start with the Bugey [23] and CDHS [25] exper-
iments. Both are disappearance experiments and, there-
fore, the relevant SBL survival probabilities are given by

Pνα→να = Pν̄α→ν̄α = 1− 4dα(1− dα) sin2
∆m2L

4E
, (36)

where α = e refers to the Bugey and α = µ to the CDHS
experiment. Both experiments have not found evidence for
neutrino oscillations. In the case of the Bugey experiment
the survival amplitude 4de(1 − de) is bounded by 0.1 or
smaller values in the relevant range 0.1 eV2 � ∆m2 �
10 eV2 at 90% CL [23]. Thus, de is either very small or
close to 1. Since for solar neutrinos the inequality

P�
νe→νe

≥ d2e (37)

holds [8], de must be small4 and in the fit of the Bugey data
we make the approximation de(1−de) 
 de in the survival
probability. In principle, the inequality (37) should be in-
cluded in our analysis with the help of one of the methods
discussed in Sects. 3.1 and 3.2, but in view of the small-
ness of the Bugey survival amplitude this is not necessary.
In the case of the CDHS experiment, for ∆m2 � 0.3 eV2,
there is an analogous feature concerning dµ [25]; there, the
selection of the small dµ is guaranteed by the up–down in-
equality (12) [10]. For smaller ∆m2 the CDHS restriction
disappears and values of dµ as large as 0.5 are allowed by
the up–down inequality. Therefore, in LCDHS we do not
neglect d2µ in the survival amplitude because this would
not be justified.

In the KARMEN experiment, ν̄µ → ν̄e transitions have
not been observed and the KARMEN exclusion curve [26,
27] cuts right through the region allowed by LSND. There-
fore, it is important to take into account the KARMEN
result in our analysis. For the details of our fit to the

4 We want to stress that this is the only place where solar
neutrino data enter our analysis. Moreover, our inference that
de must be small is independent of the actual solution to the
solar neutrino problem
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0.1

1

10

0.001 0.01 0.1 1

∆m
2  [

eV
2 ]

Aµ;e

90%CL
95%CL
99%CL

LSND 99%CL
LSND 90%CL

Fig. 1. Upper bounds on the transition amplitude Aµ;e in the
case of (3+1)-mass spectra for 90%, 95% and 99% CL. These
bounds have been calculated with the maximum likelihood ap-
proach for the inclusion of the atmospheric up–down inequality
(12) and the CHOOZ inequality (23) as described in Sect. 3.2.
Also shown are the regions allowed by the latest LSND results
[6] at 90% and 99% CL

KARMEN data and the analogous details concerning the
Bugey and CDHS experiments see AppendixB.

We include the CHOOZ result in our analysis for ∆m2

≥ 0.05 eV2, where the bound on sin2 2θ in the CHOOZ
plots is a straight line [22]; this guarantees that oscilla-
tions with the SBL ∆m2 are averaged out and hence (23)
is valid. The CHOOZ result has an effect on the Aµ;e ex-
clusion curve mainly for ∆m2 where the Bugey bound on
de is not so strong, which is the case for ∆m2 around
0.1 eV2 and ∆m2 � 5 eV2.

4.3 The bound on Aµ;e

Figure 1 represents the main result of this paper. In this
figure we show the regions in the ∆m2–Aµ;e plane allowed
by LSND at 90% and 99% CL [6] and our exclusion curves
for Aµ;e with (3+1)-mass spectra at 90%, 95% and 99%
CL. These exclusion curves have been calculated using the
maximum likelihood approach of Sect. 3.2 for the treat-
ment of the true values Aud and PCH. This method gives
– for most values of ∆m2 – slightly weaker bounds than
the Bayesian approach of Sect. 3.1; however, the numeri-
cal difference between the two methods is always smaller
than 4%. We read off from Fig. 1 that the 99% CL LSND
region has no overlap with the allowed region to the left
of our 95% CL bound. This shows that the likelihood of
(3+1)-mass spectra is not very high. Comparing the 99%

CL exclusion curve with the 99% CL LSND region and
confining ourselves to ∆m2 < 10 eV2, we find overlaps at
∆m2 ∼ 6, 1.7, 0.9 and approximately between 0.25 and
0.4 eV2. This agrees with the findings in [13], where 90%
exclusion curves and the bound on Aµ;e derived in [8] are
compared with the 99% CL LSND region. The result of
the inclusion of the CHOOZ result for ∆m2 ≥ 0.05 eV2

can be seen as a jump in our exclusion curves. From this
jump the effect of the CHOOZ result can be read off for
small mass-squared differences. Let us stress once more
that in our analysis an exclusion curve for a given CL
is the result of a well-defined statistical procedure and is
obtained by including all available data other than the
LSND data; such exclusion curves have a precise statisti-
cal meaning; an overlap of the 99% CL LSND region with
the region to the left of an exclusion curve occurs only
with the exclusion curve at 99% CL, but not at 95% CL.

There are claims in the literature that all three indi-
cations in favour of neutrino oscillations are compatible
with three neutrinos [29]. Such claims have been refuted
by a combined fit to the data [30]. In our analysis we
arrive at the same conclusion, because our treatment of
the (3+1)-spectra is also applicable in the case of three
neutrinos, where one has (2+1)-mass spectra, since there
is a SBL mass-squared difference ∆m2 and another mass-
squared difference much smaller than ∆m2; assuming that
m3 is the mass separated from the other two by the LSND
mass gap, we have to make the identification dα = |Uα3|2
(α = e, µ). The values of ∆m2 and Aµ;e, indicated in the
papers of [29] as preferred solutions, lie in the region al-
lowed by LSND at 99% and thus beyond our 95% CL
exclusion curve in Fig. 1.

5 The (2+2)-neutrino mass spectra

If we want to treat the (2+2)-neutrino mass spectra with
the method discussed in the previous two sections, the sit-
uation is more involved. In this case the νµ → νe transition
amplitude is given by [8]

Aµ;e = 4

∣∣∣∣∣∣
∑
j=1,2

UejU
∗
µj

∣∣∣∣∣∣
2

= 4

∣∣∣∣∣∣
∑
j=3,4

UejU
∗
µj

∣∣∣∣∣∣
2

(38)

and cannot be expressed by

dα =
∑
j=3,4

|Uαj |2 (α = e, µ), (39)

as in the case of the (3+1)-spectra (see (4)). This suggests
to perform an analysis with the five parameters de, dµ,
Aµ;e, Aud and PCH in the case of the (2+2)-spectra.

Let us explore in more detail the relationship between
the amplitude Aµ;e and the parameters de and dµ. From
(38), using the Cauchy–Schwarz inequality, we readily ob-
tain the inequality [8,31]

Aµ;e ≤ 4min[dedµ, (1− de)(1− dµ)]. (40)
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This inequality implies that for every Aµ;e the following
region is allowed in the de–dµ plane:

F(Aµ;e) :

{
1
2 (1− √

1− Aµ;e) ≤ de ≤ 1
2 (1 +

√
1− Aµ;e),

Aµ;e/4de ≤ dµ ≤ 1− Aµ;e/4(1− de).

(41)

For every Aµ;e between 0 and 1, this is a region in the
unit square, confined by two hyperbolas. Let us label the
neutrino masses such that ∆m2

21 = ∆m2
atm and ∆m2

43 =
∆m2

solar. Then, with the definitions (39), (9) and (11) hold
also for the (2+2)-mass spectra and we obtain the inequal-
ities

−Aud ≤ G′(de, dµ, Aµ;e) =
(1− dµ)2 +Aµ;e/4r

(1− dµ)2 + 2d2µ + 3Aµ;e/4r
(42)

and

Aud ≤ H ′(de, dµ, Aµ;e) =
dµ(1− dµ)− Aµ;e/4r

1− dµ(1− dµ) +Aµ;e/4r
(43)

for the atmospheric up–down asymmetry. Furthermore,
the survival probability for solar neutrinos is bounded by
P�
νe→νe

≥ 1
2 (1−de)2. Therefore, de is close to one5 and we

make the approximation de(1− de) 
 1− de in the Bugey
survival amplitude. Note that the CHOOZ inequality (23)
also holds for the (2+2)-spectra.

In analogy to (34) in the (3+1)-case, our aim is to ob-
tain a probability distribution in Aµ;e. Here we confine
ourselves to the maximum likelihood method of Sect. 3.2
for the treatment of inequalities. In addition to the up–
down and CHOOZ inequalities we have to take into ac-
count (41). According to the method of Sect. 3.2, we max-
imise with respect to Aud, PCH, de and dµ. The max-
imization with respect to the first two variables leads to
the functions L′m

ud and LmCH, which are defined in Sect. 3.3.
The prime on the first function indicates that now it is ob-
tained from Lmud by the replacement G → G′ and H → H ′.
Generalising the method of Sect. 3.2, we define

L′(Aµ;e) = max
(de,dµ)∈F(Aµ;e)

[
L′
oscL

′m
udL

m
CH

]
, (44)

where L′
osc is given by (35), but in view of the appearance

of Aµ;e in LKARMEN it is interpreted as a function of three
variables. Finally, we obtain the probability distribution
for Aµ;e given by

p′
m(Aµ;e) =

L′(Aµ;e)Θ(Aµ;e)Θ(1− Aµ;e)∫
dA′

µ;eL
′(A′

µ;e)Θ(A′
µ;e)Θ(1− A′

µ;e)
. (45)

In Fig. 2 the 90% CL bound on Aµ;e calculated with
the distribution (45) is plotted. In this figure the 90% and
99% CL level regions of LSND are also depicted. The re-
gion to the left of the bound has an overlap area with

5 If de is small, then it follows that P �
νe→νe

� 0.5, which is
in disagreement with the result of the Homestake experiment
(see first paper in [2]); moreover, for small de we obtain the
same bound on Aµ;e as for the disfavoured (3+1)-mass spectra

0.01

0.1

1

10

0.001 0.01 0.1
∆m

2  [
eV

2 ]

Aµ;e

(2+2)-bound 90% CL
KARMEN 90% CL

Bugey 90% CL
LSND 99% CL
LSND 90% CL

Fig. 2. The upper bound on the transition amplitude Aµ;e in
the case of (2+2)-mass spectra for 90% CL calculated with the
probability distribution (45). Also shown are the 90% and 99%
CL level regions of LSND of [6], and the Bugey and KARMEN
bounds referring to 90% CL as given by our reanalysis

the LSND region of 90% CL. This shows that the (2+2)-
spectra are well compatible with all data. Also shown in
Fig. 2 are the KARMEN and Bugey exclusion curves. As
expected, for large ∆m2 the solid line of our exclusion
curve follows rather well the KARMEN exclusion curve,
whereas for small ∆m2 it tends to follow the Bugey curve.
Due to the inclusion of the CHOOZ result above 0.05 eV2,
the solid line is more restrictive there than the Bugey
curve, whereas below 0.05 eV2 both curves are nearly iden-
tical. We have also investigated the exclusion curve of the
(2+2)-spectra within the Bayesian approach to inequali-
ties of Sect. 3.1. In this approach we have more freedom
to make “reasonable” choices for priors than in the (3+1)-
case, and, numerically, the Aµ;e bounds tend to be a little
more restrictive than the solid line in Fig. 2.

6 Conclusions

In this paper we have examined the (3+1) and (2+2)-
classes of the 4-neutrino mass spectra within a rigorous
statistical analysis. Since we do not have sufficient infor-
mation concerning the final LSND data [6], we have chosen
the approach to analyse all other available data and com-
pare our result with the LSND result in a ∆m2–Aµ;e plot.
This approach suggests to extract that information from
the solar and atmospheric data which is most relevant for
SBL oscillations with respect to ∆m2. This extraction is
most appropriately done in the form of inequalities involv-
ing elements of the neutrino mixing matrix [8–10]. Simi-
larly, we have extracted the “SBL information” contained
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in the CHOOZ result. On the other hand, concerning the
SBL experiments, we have fully included the data of the
Bugey, CDHS and KARMEN experiments.

Since our aim has been to incorporate in the statistical
analysis the atmospheric up–down inequality, (12) or (42),
and the CHOOZ inequality (23), we have made use of the
likelihood function in combination with the Bayesian ap-
proach to probability which allows us to derive probability
distributions of the parameters which are to be estimated.
In this context we have presented two possibilities for in-
cluding inequalities involving parameters: one way is to
treat them in the form of prior probability densities for
which a “reasonable choice” has to be made; another way
is a kind of maximum likelihood treatment. Numerically,
we have compared both methods for exclusion curves in
the case of the (3+1)-spectra and found that the difference
is negligible.

With the method described in this paper we have ob-
tained for every ∆m2 a probability distribution for the
SBL transition amplitude Aµ;e, from which we could de-
rive bounds as a function of ∆m2 on this amplitude for
any CL. The results are shown in Figs. 1 and 2 for the
(3+1) and (2+2)-neutrino mass spectra, respectively. In
the latter case our 90% CL exclusion curve is close to the
KARMEN exclusion curve down to ∆m2 ∼ 0.5 eV2; there
it turns off and starts to come close to the exclusion curve
given by the Bugey data. Thus, for the (2+2)-spectra
our method reproduces more or less what one obtains
by naively comparing the KARMEN and Bugey exclu-
sion curves with the region allowed by LSND. Therefore,
these spectra are well compatible with all the data. On the
other hand, in the case of the (3+1)-spectra, our 95% CL
bound has no overlap with the LSND region of 99% CL.
We, therefore, come to the conclusion that this spectral
class is rather unlikely, even with the recent change in the
LSND region.

Thus we strengthen with the method presented here
the claims made in [8–10]. Should the LSND result be
confirmed by the MiniBooNE Collaboration [32], then, in
a 4-neutrino scheme, the sterile neutrino should make its
appearance either in the solar or atmospheric neutrinos,
or both.
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Appendix

A The relationship between the Bayesian
and the maximum likelihood methods
for the treatment of inequalities

Here we want to elucidate the relationship between the
methods for the inclusion of inequalities introduced in

Sects. 3.1 and 3.2. In the Bayesian approach to this prob-
lem we consider in general integrals of the type

I[π] =
∫ b

a

dzLZ(z)π(z), (46)

where LZ is given by (16). A prior π is a positive and
piecewise continuous function such that

∫ b
a
dzπ(z) = 1. In

Sect. 3.1 we have used the flat prior (18). If we denote the
set of all prior probability densities on the interval [a, b]
by P, then the following proposition holds.

Proposition: For the integral in (46) one has the upper
limit

max
π∈P

I[π] = LmZ , (47)

where LmZ is given by (22).

Proof: The proof is very straightforward. Let us first as-
sume that zexp > b. Then we have

I[π] < LZ(b)
∫ b

a

dzπ(z) = LZ(b).

Thus we have found an upper bound on I. If we can find
a sequence of πk of prior probability densities such that

lim
k→∞

I[πk] = LZ(b),

then the proposition is proven for the case zexp > b. Such
a sequence is easy to give: any sequence πk, for which
πk(z) = 0 for z ≤ b − 1/k holds, fulfills our purpose.
For zexp < a we proceed analogously. If zexp ∈ [a, b], the
upper bound on I is LZ(zexp). The sequence πk is con-
structed accordingly with the idea given before. Thus for
the three cases zexp > b, zexp < a and zexp ∈ [a, b] we have
the upper limits LZ(b), LZ(a) and LZ(zexp), respectively.
In summary, we just have obtained the expression (22).
Q.E.D.

Thus the expression LmZ is obtained from the Bayesian
approach as the maximum over all possible priors. Roughly
speaking, the prior in I, which gives LmZ , is a delta func-
tion (δ(z−b), δ(z−a) or δ(z−zexp)); however, in order to
choose the correct delta function one has to know the ex-
perimental value zexp and, therefore, such a function does
not deserve the name “prior” anymore. Though #Z < LmZ
holds, it is not obvious which method gives the stronger
constraint in an actual situation, because one has addi-
tional factors in the probability distribution one aims at,
coming from additional data, and one has to normalise the
combined distribution (see (15)). Moreover, the bounds a
and b are in general functions of the parameters whose
distribution we want to know. In the concrete situation
discussed in Sect. 4 the maximum likelihood method rep-
resented by LmZ gives a slightly weaker restriction on the
transition amplitude Aµ;e for most ∆m2.

B The analyses of the Bugey, CDHS
and KARMEN experiments

In this appendix we describe how the data of the SBL
experiments Bugey, CDHS and KARMEN is included in
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our analysis. We use as much information as can be recov-
ered from the publications of the experimental groups to
perform a fit to the data. The fact that we can reproduce
the published 90% CL bounds in the case of 2-neutrino
oscillations to a good accuracy inspires confidence in our
analysis.

B.1 Bugey

The Bugey experiment [23] searches for ν̄e disappearance
at the three distances 15m, 40m and 95m away from a
nuclear reactor. The electron antineutrinos are detected
through the reaction ν̄e + p → e+ + n. As input data for
our analysis we use Fig. 17 of [23], where the ratios of the
observed events to the number of expected events in case
of no oscillations are shown for the three positions in bins
of positron kinetic energy in the range 1MeV ≤ Ee+ ≤
6MeV.

For the analysis we follow (9) of [23] and use the χ2-
function

χ2 =
∑
j



Nj∑
i=1

[
(Aaj + b(Eji − E0))Rtheo

ji − Rexp
ji

]2
σ2
ji

+
(aj − 1)2

σ2
a

}
+

(A − 1)2

σ2
A

+
b2

σ2
b

. (48)

Here j = 15, 40, 95 labels the three positions, i the posi-
tron energy bins and N15 = N40 = 25, N95 = 10 are
the numbers of bins at each position. For Eji we take the
mean positron energy in bin ji. Rexp

ji is the ratio of mea-
sured to expected events in each bin with its statistical
error σji, both read off from Fig. 17 of [23]. Rtheo

ji is the
theoretical prediction for this ratio in the case of oscilla-
tions, depending on the oscillation parameters, and we set
Rtheo
ji = 〈Pν̄e→ν̄e〉ji, where Pν̄e→ν̄e is given in (36). Var-

ious systematic uncertainties are taken into account by
minimising the χ2, (48), with respect to the five param-
eters A, aj and b for given oscillation parameters. In [23]
the values σA = 4.796%, σa = 1.414%, σb = 0.02MeV−1

and E0 = 1MeV are given.
To perform the averaging of the survival probability we

estimate the uncertainty in the flight length of the neutri-
nos because of the size of the production region and the
detector to 3m and we assume that the flux varies with the
distance as L−2. In the relevant energy range antineutrino
and positron energy are related by Eν = Ee++1.8MeV to
a very good approximation. For the purpose of averaging
the survival probability over the energy range in one bin
it is a good approximation to take neutrino flux, detection
cross section and efficiency as constant with energy. The
reason for this is that the energy bins are relatively small
and only ratios of observed to expected events in each bin
are considered. Furthermore, we assume a Gaussian reso-
lution function for the positron energy measurement with
variance 0.4MeV.

The likelihood function in (35) which contains the in-
formation of the Bugey experiment is obtained from the

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1
∆m

2  [
eV

2 ]

sin22θCDHS

Fig. 3. The 90% CL bound on sin2 2θCDHS given by our re-
analysis of the CDHS experiment as described in Sect. B.2

χ2 of (48) by [21]

LBugey(de) ∝ exp
(

−1
2
χ2

)
. (49)

The 90% CL bound on de obtained from this likelihood
function alone can be compared to the Bugey exclusion
curve in the 2-neutrino case with the identification
sin2 2θBugey 
 4de. The curve obtained by our analysis
is shown in Fig. 2 and compares well with the originally
published one [23].

In (36) contributions of oscillations because of ∆m2
atm

to the SBL disappearance amplitude are neglected. This
approximation may not be exactly fulfilled in the Bugey
experiment for small ∆m2

SBL and large ∆m2
atm. We have

calculated the 90% CL bound from Bugey by taking into
account also oscillations with ∆m2

atm = 6 × 10−3 eV2,
which is the 99% CL upper bound on ∆m2

atm [15], and
find that for ∆m2

SBL > 0.04 eV2 the effect is smaller than
6%.

B.2 CDHS

The CDHS experiment [25] searches for νµ disappearance
by comparing the number of events in the so-called back
and front detectors at the distances Lback = 885m and
Lfront = 130m, respectively, from the neutrino source. The
neutrinos are detected via muons produced in charged-
current interactions. The data are given in the form of the
double ratios

Rcorr =
Nback/Nfront

NMC
back/N

MC
front

, (50)

where Nback (Nfront) is the number of observed events in
the back (front) detector and NMC

back and NMC
front are the
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corresponding quantities expected for no oscillations cal-
culated by Monte Carlo.

The ratios (50) are given in 15 bins of “projected range
in iron”. This is the distance traveled by the muon in
the detector (consisting of iron) projected onto the detec-
tor axis, which has an angle of 22◦ relative to the neu-
trino beam axis. We calculate the range in iron r(Eµ)
of a muon with energy Eµ by integrating (23.1) of [21].
The muon energy intervals [E(i1)

µ , E
(i2)
µ ] corresponding to

the intervals of projected range (rproj) for bin i given
in Table 1 of [25] are obtained by applying the relation
rproj(Eµ) 
 r(Eµ) cosϑ cos 22◦, where ϑ 
 20◦ is the av-
erage scattering angle of the muons [33].

We estimate the number of events in bin i and at po-
sition p = back or front using

Nip ∝ (51)

Mp

∫ E(i2)
µ

E
(i1)
µ

dEµ
∫ ∞

Eµ

dEν
∫ Lp+∆Lp/2

Lp−∆Lp/2
dLL−2

×Pνµ→νµ(L/Eν)× Φ(Eν)
dσDIS(Eν , Eµ)

dEµ
.

Here Mp is the detector mass at position p. Taking into
account the size of the decay tunnel (52m) and the length
relevant for detection in the back/front detector (72m/
22m) [25] we have ∆Lback = 52 + 72m and ∆Lfront =
52 + 22m. The disappearance probability Pνµ→νµ(L/Eν)
depending on the oscillation parameters is given in (36)
and σDIS is the cross section for the deep inelastic scatter-
ing process νµ + N → µ + X (see, e.g., [34]). The neu-
trino flux Φ(Eν) in the relevant neutrino energy range
Eν � 0.7GeV is proportional to exp(−Eν/1GeV) [25,
33]. Finally, we obtain for the theoretical prediction for
the double ratios (50) in bin i

Ritheo =
Niback
Nifront

(
Lback

Lfront

)2
Mfront

Mback
, (52)

and we define the CDHS likelihood function by

LCDHS(dµ) ∝ (53)

exp


−1

2

∑
ij

(Ricorr − Ritheo)(S
−1)ij(Rjcorr − Rjtheo)


 .

Assuming total correlation between any two bins, the co-
variance matrix is given by Sij = δijσ

2
i + σ2

syst. R
i
corr and

its statistical error σi are read off from Table 1 of [25]. The
overall systematic error in the ratio of event rates in the
two detectors was estimated to σsyst = 2.5% in [25].

The 90% CL bound on sin2 2θCDHS = 4dµ(1− dµ) ob-
tained by our analysis is shown in Fig. 3. It is very similar
to the bound published by the CDHS collaboration [25].
There are minor differences for small mass squared dif-
ferences, which could have some effect for our bound on
Aµ;e in the region 0.2 eV2 � ∆m2 � 0.4 eV2: our bound
disappears at ∆m2 
 0.3 eV2, whereas the CDHS bound
extends down to approximately 0.24 eV2.

B.3 KARMEN

The latest data of the ν̄µ → ν̄e oscillation search in the
KARMEN experiment is presented in [27]. Analysing the
data taken from February 1997 to March 2000 they find a
total of 11 candidate events, in good agreement with the
expected number of background events for no oscillations
of 12.3 ± 0.6. For our analysis we use the data resulting
from the detection process ν̄e+ p → e+ + n. The positron
spectrum S(Ee+) expected for Aµ;e ≡ sin2 2θKARMEN = 1
and ∆m2 = 100 eV2 we take from Fig. 2(a) of [26]. To
estimate the number of events in a positron energy interval
[E1, E2] resulting from neutrino oscillations we follow (B1)
of [35]:

Nosc = N

∫ E2

E1

dEe+S(Ee+)
∫ L2

L1

dLL−2Pν̄µ→ν̄e(L/Eν),

(54)
where the oscillation probability Pν̄µ→ν̄e is given in (3).
For L1,2 we take 17.5 ∓ 1.75m [35] and antineutrino en-
ergy and positron kinetic energy are related by Eν =
Ee+ + 1.8MeV. The normalization factor N is fixed by
requiring that for the total positron energy range E1 =
16MeV, E2 = 52MeV, full mixing (sin2 2θKARMEN = 1)
and ∆m2 ≥ 100 eV2 the number of events resulting from
oscillations is 2442 (see Table 1 of [27]).

From Fig. 2(b) of [27] we read off for each of the 9
positron energy bins the number of observed events Nobs

i
and the number of background events expected for no os-
cillations Bi. Then we construct the likelihood function
by using the Poisson distribution:

LKARMEN(Aµ;e) =
9∏
i=1

1
Nobs
i !

(Nosc
i +Bi)N

obs
i e−(Nosc

i +Bi).

(55)
Here Nosc

i is calculated from (54) by choosing E1 and E2
according to the bin i. The 90% CL bound on Aµ;e for a
given ∆m2 obtained from the probability distribution im-
plied by (55) in the Bayesian approach is shown in Fig. 2.
Our bound is very close to the one presented in [27].
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